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ABSTRACT 
Breast cancer is one of the most common malignant tumors in women, which seriously affect women’s physical 

and mental health and even threat to life. At present, mammography is an important criterion for doctors to 

diagnose breast cancer. However, due to the complex structure of mammogram images, it is relatively difficult 

for doctors to identify breast cancer features. At present, deep learning is the most mainstream image 

classification algorithm. Therefore, this study proposes an improved DenseNet neu-ral network model, also 

known as the DenseNet-II neural network model, for the effective and accurate classification of benign and 

malignant mammography images. Firstly, the mammogram images are pre-processed. Image normalization 

avoids interference from light, while the adoption of data enhancement prevents over-fitting cause by small data 

set. Secondly, the DenseNet neural network model is improved, and a new DenseNet-II neural network model is 

invented, which is to replace the first convolutional layer of the DenseNet neural network model with the 

Inception structure. Finally, the pre-processed mammo-gram datasets are input into AlexNet, VGGNet, 

GoogLeNet, DenseNet network model and DenseNet-II neural network model, and the experimental results are 

analyzed and compared. According to the 10-fold cross validation method, the results show that the DenseNet-II 

neural network model has better clas-sification performance than other network models. The average accuracy 

of the model reaches 94.55%, which improves the accuracy of the benign and malignant classification of 

mammogram images. At the same time, it also proves that the model has good generalization and robustness. 
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I. INTRODUCTION 
At present, breast cancer has become one of the most common malignant tumors in women [1], and its 

incidence is rising in both developed and developing countries. Clinically, malignant tumors are usually defined 

as positive, and benign tumors are defined as negative. Currently, the detection methods applied in the diagno-

sis of breast cancer include mammography, computed tomography technology, photoacoustic imaging, nuclear 

magnetic resonance imaging, microwave imaging and other technologies [2,3]. Among them, mammography is 

a very effective technique for detecting breast cancer [4]. There are two main manifestations of breast can-cer on 

mammogram images, including masses and calcifications. Typical benign tumors appear on the mass as 

rounded, smooth and generally clear. The calcification is characterized by a coarser shape, a granular shape, a 

popcorn shape or a ring shape, and its density is higher and the distribution is more dispersed. Typical malignant 

tumors have a needle-like shape on the mass, and the edges are irregular and generally fuzzy. The morphology 

of calcification is mostly small sand-like, linear or branched, with different shapes and sizes, and the distribution 

is often dense or clustered in a lin-ear shape [5]. Due to the complexity of the mammogram images of early 

breast cancer, coupled with the low contrast of the mam-mogram images itself, it is difficult for doctors to make 

a correct diagnosis based on mammogram images. Therefore, it is neces-sary to improve the diagnostic 

efficiency of doctors by using the computer aided diagnosis system (CAD) of deep learning. 

In recent years, with the development of digital image pro-cessing technology and artificial intelligence 

technology, the use of computer-aided detection and diagnosis system to assist breast radiologists to judge the 
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classification of benign and malignant breast tumors has become a realistic and significant scientific prob-lem. 

Many scholars have also used CAD to identify and classify microcalcifications and masses in mammogram 

images. 

On the one hand, the most common method is to use SVM to classify the region of interest (ROI) of 

mammogram images. Liu et al. used the SVM classifier to classify the masses. The exper-imental results 

showed that the area under the ROC curve was Az = 0.7 [6]. Anitha et al. used the same idea to conduct a 

simulation experiment on 44 mammogram images containing masses in the 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Benign and malignant breast mass images. 

 

MIAS database, and the author pointed out that the classification accuracy of the masses reached 95% 

[7]. Combining regression fea-tures to eliminate SVM and normalized mutual information feature selection 

method, Liu et al. simulated the mammogram images of DDSM library, and the results showed that the 

classification accu-racy of the method reached 93% [8]. However, these methods had inherent disadvantages, 

that is, the traditional SVM assumed that all features had the same degree of influence on the classifica-tion 

target. Since most of the above classification algorithms were carried out on small data sets, they were not 

suitable for identify-ing and classifying large data sets in hospitals. In addition, there were no uniform 

comparison between algorithms, and the accu-racy was not comparable. Moreover, these classification 

algorithms used artificial-based feature extraction methods, which not only required professional domain 

knowledge, but also required a lot of time and effort to complete. The key was that there were often certain 

difficulties in extracting features. It seriously restricted the application of traditional machine learning 

algorithms in mammo-gram images classification. 

On the other hand, neural networks based on deep learning classify mammograms. Arbach et al. 

evaluated the performance of classification of mammograms based on backpropagation neural network (BNN) 

and compared them with radiologists and resi-dents. The results showed that the area under the ROC curve of 

BNN was Az = 0.923.The area under the ROC curve of the radiologist was Az = 0.864, and the area under the 

ROC curve of the resident was Az = 0.648 [9]. The neural network system designed by Shih-Chung et al. 

detected 91 cases of mammogram images. The test resulted that the area under the ROC curve was Az = 0.78 

[10]. Moreover, the hidden layer of the neural network they designed has 125 nodes, which maked the 

generalization of the neural network not good enough. The common features of these methods were higher 

sensi-tivity, lower specificity, lower recognition rate, and greater research space. 

Therefore, this paper studies and improves a deeper and more complex DenseNet neural network 

model [11], inventing a new DenseNet-II neural network model, which can maintain the sparse-ness of the 

network structure. It also prevents the model from overfitting and improves computer performance. At the same 

time, the data enhancement method is used to prevent the over-fitting caused by the small sample data set, bring 

about an increase in rate of identification of the mammogram images. Using the DenseNet-II neural network 

model can not only improve the diag-nostic efficiency, but also provide doctors with more objective and 

accurate diagnosis results. so it has important clinical application value. 

 

II. DATA COLLECTION AND PREPROCESSING 
2.1.  Data collection 

The datasets used in this paper are taken from mammography images provided by the First Hospital of 

Shanxi Medical University. Mammary gland lesions are obtained by full-field digital mammog-raphy (FFDM) 
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examination. A total of 2042 cases of breast disease are usually defined as positive for malignancy and negative 

for benign [12]. After being confirmed by the experts of the First Hos-pital of Shanxi Medical University, there 

are 1011 negative cases and 1031 positive cases, all of which are female patients.All of the mammogram images 

in the database have been marked by experts, as shown in Fig. 1(a) and (b) are images of malignant breast 

tumors and benign breast tumors, respectively. 

 

2.2.  Data preprocessing 

Mammography is currently the only widely accepted means of routine breast cancer screening [13] to 

assist physicians in clinical diagnosis. However, it is a low-radiation, high-resolution image. It is difficult to 

judge the mammogram images directly with the naked eye. Therefore, it is necessary to preprocess the image 

datasets. Through image preprocessing, the quality and quantity of images can be improved, making the 

recognition rate more accurate. Two processing techniques are used for the mammogram images: zero-mean 

normalization [14] and data enhancement, which can improve the speed and accuracy of mammogram images 

classifica-tion. 

 

2.2.1.  Zero-mean normalization 

The main purpose of image normalization [15] is to reduce the interference of medical images due to 

uneven light. Image nor-malization causes the image to find some invariants, enhances robustness, and speeds 

up the convergence of the training model. Zero-mean normalization is the normalization of data for the mean 

and standard deviation of the raw data. The processed data con-forms to the standard normal distribution, that is, 

the mean is 0, the standard deviation is 1, and the conversion function is as shown in 

 

(1): 

 

x∗  = 
x − 

 (1)  

Where   is the mean of all sample 

data, is the standard deviation 

of all sample data.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. DenseNet network dense connection mechanism (where c represents the channel level connection 

operation). 

  

2.2.2.  Dataset enhancements 

The manually labeled training data set is limited. Due to the limitation of the training samples, CNN is 

prone to over-fitting during the training process, resulting in low medical image recog-nition rate and 

unsatisfactory diagnosis results [16]. Therefore, this requires a large increase in the training data set. The 

solution is to enhance the mammogram images dataset by affine transformation and random cropping. 

(1) The mammogram images data set is enhanced by the affine transformation method [17]. It mainly rotates 

the image by 90 
◦
 / 180 

◦
 / 270 degrees, scales by 0.8, mirrors horizontally and vertically, and combines 

these operations. 

(2) Mammogram images are processed by random cropping to obtain more data sets. The data set can be 

expanded by a factor of 15 by the above two methods. 

 

III. METHODS 
With the continuous improvement of computer computing power and the arrival of the era of big data, 

deep learning over-comes the limitations of shallow learning, without the need to manually design and extract 

features. It can extract more expres-sive and abundant essential characteristics from the data set. In recent years, 
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deep learning has been successfully applied in the fields of computer vision, natural language processing, 

medical image processing, etc. [18]. Therefore, the use of deep learning technology for the identification of 

benign and malignant breast tumors has become the focus of clinical diagnosis research, and the accurate 

identification of benign and malignant breast tumors has important research significance for the diagnosis and 

treatment of breast cancer [19]. 

Deep learning can be regarded as a multi-layer artificial neu-ral network [20]. By constructing a neural 

network model with multiple hidden layers, the low-level features are transformed by layer-by-layer nonlinear 

features to form a more abstract high-level feature expression to discover the distributed feature representation 

of the data [21]. As one of the most commonly used deep learning models, convolutional neural networks 

directly use 2D or 3D images as input to the network, avoiding the com-plex feature extraction process in 

traditional machine learning algorithms. Compared with a fully connected neural network, con-volutional neural 

networks use local connections, weight sharing, and downsampling, reducing the number of network parameters 

and reducing computational complexity. At the same time, the translation, zoom, rotation and other changes of 

the image are highly invariant. 

 

3.1.  DenseNet neural network model 

This paper chooses the densely connected DenseNet neu-ral network model. Different from other convolutional 

neural networks, it has the following two characteristics:(1) Dense con-nection: Each layer is connected to each 

of the previous layers to achieve feature reuse.(2) Due to feature reuse, each layer uses a small number of 

convolution kernel extraction features to achieve the purpose of reducing redundancy. In DenseNet, each layer 

is concated with all previous layers in the channel dimension, 
and

 for an L-layer network, DenseNet contains a 

total of 
L(L+1) 2

 connections. Fig. 2 shows the dense connection mechanism of DenseNet. 

The advantages of DenseNet are mainly reflected in the follow-ing aspects: 

(1) Effectively solve the problem of gradient disappearance; 

(2) Strengthening feature propagation; 

(3) Support feature reuse; 

 

(4) Significantly reduce the number of parameters. 

 

This model can omit the pre-training on the ImageNet [22] dataset and start training directly from the 

randomly initial-ized model, achieving the goal of saving time and efficiency. In many large-scale practical 

applications, there are great differences between the actual dataset and the ImageNet dataset. Therefore, it is a 

good prospect to apply this network model that does not require pre-training to medical image classification 

[23]. 

 

3.1.1.  Design of DenseNet neural network structure 

DenseNet’s network structure consists mainly of the DenseBlock layer and the Transition layer. In 

order to prevent the network structure from becoming wider, the total number of DenseNet networks is 40 

layers, and the growth rate k = 12, including 3 DenseBlock layers and 2 Transition layers. This model does not 

have too many parameters, while saving computational memory and reducing overfitting. As shown in Fig. 3. 

 

3.1.1.1. DenseBlock layer. In all DenseBlocks, each layer is out-putted with a k-characteristic map after 

convolution (and the feature maps of each layer are the same size), that is, k convo-lution kernels are used for 

feature extraction. k is called growth rate in DenseNet, which is a hyperparameter. Since there are many inputs 

for each layer in the back, DenseBlock can use the bot-tleneck layer internally to reduce the amount of 

computation, that is, th BN + ReLU+ 1 × 1 Conv + BN + ReLU+ 3 × 3 Conv struc-ture used in the nonlinear 

combination function in DenseBlock. As shown in Fig. 4. The role of 1 × 1 Conv is to reduce the number of 

features, which can improve the calculation speed and effi-ciency. 

3.1.1.2. Transition layer. It mainly connects two adjacent Dense-Block layers and reduces the feature map size. 

The Transition layer includes a 1 × 1 convolution and 2 × 2 AvgPooling [24], and the structure is BN + ReLU+ 

1 × 1 Conv+ 2 × 2 AvgPooling. Therefore, 

 

 

 

 

 

 

 

Fig. 3. DenseNet neural network structure. 
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Fig. 4. DenseBlock using the bottleneck layer. 

 

the Transition layer can function as a 

compression model. Each 

tion of multiple features. The calculation formula is as 

shown in 

layer will connect all the previous 

layers as input:  (3) 

= f 

     

 

 

x 

l  
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l ([x0 , x1 , . . 

., x 

l−

1 

]) (2) 

x  j xi − 1

) 

∗ kij + bj (3) 

   (l)  (l  (l) (l)   

                  

 

H1 (•) is a non-linear transformation function, a combination that includes a series of BN(Batch 

Normalization), ReLU, Pooling, and Conv operations. The final DenseBlock is followed by a global Avg-

Pooling layer, which is then sent to a softmax classifier for image recognition classification. 

 

3.2.  DenseNet-II neural network structure 

Due to the deeper and wider network model, the defects of huge parameters are generated, which leads 

to over-fitting, increasing the amount of calculation, and consuming more com-puting resources. To avoid this 

problem, the DenseNet model has been improved and is called the DenseNet-II network model. The Inception 

structure [25] replaces the first3 × 3 convolution in the DenseNet network before entering the first DenseBlock 

layer. The improved model is called the DenseNet-II neural network model. Like the DenseNet neural network 

model, the DenseNet-II neu-ral network model uses 40 layers with a growth rate of k = 12, including 3 

DenseBlock layers and 2 Transition layers. As shown in Fig. 5. 

 

The main differences between DenseNet and DenseNet-II neural network structures are: 

For the DenseNet neural network, before entering the first DenseBlock, first perform a 3 × 3 

convolution (stride = 1). There are a total of 16 convolution kernels. The convolution layer is mainly responsible 

for extracting features in the image, avoiding the mis-take of manually extracting features. Consisting of a set of 

feature maps, the same feature map shares a convolution kernel, which is actually a set of weights, also called 

filters. A learnable convolu-tion kernel is convolved with several feature maps of the previous layer, and the 

corresponding elements are accumulated and then offset, and then passed to a nonlinear activation function 

ReLU func-tion to obtain a feature map, that is, the extraction of a feature is achieved. A plurality of different 

convolution kernels enable extrac- 

i ∈ Ml−1 

Where l represents the number of layers, and kij represents the convolution kernel of the feature map j 

connecting the lth layer and the feature map i of the l-1th layer, M
l−1

 represents the input feature maps selected 

by the l-1layer, and * represents the convolu-tion operation, b denotes the offset, and f (•)denotes the nonlinear 

activation function. 

For the DenseNet-II neural network, the Inception structure is mainly used to replace the first 3×3 

convolutional layer of the DenseNet neural network model. Because a deeper and wider net-work structure can 

obtain better predictive recognition, it will generate huge parameters, which will lead to over-fitting, which 

greatly increases the amount of calculation and consumes more computing resources. Inception mainly 

improves the traditional convolutional layer in the network. For deep neural network per-formance and 

computation, it mainly solves the following problems in deep networks: 

(1) too many parameters, easy to over-fit, if the training data set is limited; 

(2) The larger the network, the more computational complexity it is, and it is difficult to apply; 
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(3) The deeper the network, the easier it is for the gradient to disap-pear backwards(gradient dispersion), it is 

difficult to optimize the model. 

 

The inception structure: not only maintains the sparseness of the network structure, but also utilizes the 

high computational performance of dense matrices. In literature [24], the Inception module structure is mainly 

proposed (1 × 1,3 × 3,5 × 5 conv and 3 × 3 pooling combined), as shown in Fig. 6. The basic structure of the 

Inception module: There are 4 branches, each with a 1 × 1 con-volution. The 1 × 1 convolution is a very useful 

structure, which can organize information across channels, improve the expressiveness 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. The structure of DenseNet-II neural network model. 

 

 

 

 

 

 

 

 

 

Fig. 6. The inception model. 

 

of the network, and also raising dimension and dimension of the output channel. The module has 3 

different sizes of convolution and 1 maximum pooling, which increases the adaptability of the net-work to 

different scales. It can expand the depth and width of the network with high efficiency, and improve the 

accuracy without causing over-fitting. 

 

Therefore, the overall structure of the DenseNet-II neural net-work mainly includes Inception, Dense 

Blocks and transition layers, with fewer parameters and higher precision. 

In the DenseNet and the DenseNet-II neural network model, all 3 × 3 3 × 3 convolutions use padding = 

1 to ensure that the fea-ture map size remains unchanged. All convolutions use the ReLU function. 

 

IV. ANALYSIS OF THE EXPERIMENT AND RESULTS 
4.1.  Experimental network parameter settings 

This model is based on the Ubantu 18.04 operating system, using two NVIDIA Titan X graphics cards, 

and experimenting on the pytorch framework. The data enhancement algorithm is imple-mented in python. 

In order to test the classification performance of the DenseNet- 

II model, the AlexNet, VGGNet, GoogLeNet and DenseNet network models are compared with the 

DenseNet-II model for experimental analysis. The network structure of the selected AlexNet, VGGNet and 

GoogLeNet models are as follows: 

(1) The AlexNet model [26] has eight layers and has a parameter amount of 60 M or more. The first five layers 

are convolutional layers, the last three layers are fully connected layers, and the output of the last fully 

connected layer has 1000 outputs. The network structure is shown in Fig. 7. 

(2) The VGGNet [27] model established a 19-layer deep network, and achieved the first and second 

classification results in ILSVRC. The VGGNet network model has many similarities with the AlexNet 

framework. There are sixteen convolutional lay-ers, two layers of fully connected image feature layers, and 

one layer of fully connected classification feature layers. The network structure is shown in Fig. 8. 
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(3) The GoogLeNet model [28] is a 22-layer deep network. Its biggest feature is the introduction of the 

Inception struc-ture, and solves the problem of huge network parameters and resource consumption. The 

GoogLeNet model uses the Incep-tion structure, which not only further improves the accuracy of the 

classification, but also greatly reduces the amount of param-eters. The GoogLeNet network structure is 

shown in Table 1. 

In addition, due to the experimental evaluation of benign and malignant breast tumors, in the AlexNet 

network and GoogLeNet model, the full-connected layer output of the convolutional neural network was 

changed from 1000 to 2, which became a two-class problem. The initial learning rates of the five models are all 

set to 0.01, and the maximum number of iterations is 8000. 

 

4.2.  Training strategy 

Cross-validation is a method of model selection by estimating the generalization error of the model 

[29]. It does not have any assumptions, it is an effective model selection method, which has the universality of 

application and easy operation. In order to accu-rately measure the quality of a model evaluation method, this 

paper uses K-fold cross-validation [30], K is 10. 

In this paper, the data collected from the First Hospital of Shanxi Medical University was expanded 15 

times after image preprocess-ing, and 30,630 pairs of mammogram images are obtained. Among them, 15,165 

pairs of benign tumor images and 15,645 pairs of malignant tumor images. Using a 10-fold cross-validation 

method, all data sets were randomly divided into 10 disjoint and identi- 

  

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. AlexNet network structure. 

 

Table 1 

GoogLeNet network structure. 

type 

size/strid

e output depth 1×1 3×3 3×3 3×3 3×3 pooling 

Conv 7×7/2 112×112×64 1       

max pool 3×3/2 56×56×64 0       

Conv 3×3/1 56×56×192 2  64 192    

max pool 3×3/2 28×28×192 0       

Inception(3a)  28×28×256 2 64 96 128 16 32 32 

Inception(3b) 

3×3/2 

28×28×480 2 128 128 192 32 96 64 

max pool 14×14×480 0       

Inception(4a)  14×14×512 2 192 96 208 16 96 64 

Inception(4b)  14×14×512 2 160 112 224 24 64 64 

Inception(4c)  14×14×512 2 128 128 256 24 64 64 

Inception(4d)  14×14×528 2 112 144 288 32 64 64 

Inception(4e) 

3×3/2 

14×14×832 2 256 160 320 32 128 128 

max pool 7×7×832 0       

Inception(5a)  7×7×832 2 256 160 320 32 128 128 

Inception(5b) 

7×7/1 

7×7×1024 2 384 192 384 48 128 128 

Avg pool 1×1×1024 0       

Dropout40%  1×1×1024 0       

fc  1×1×1000 1       

softmax  1×1×1000 0       

 

cally sized subsets. Each time a subset is taken as the test data set, and the remaining 9 samples are 

taken as the training data set, of which 25% of the training set is used as the verification set. Until all 10 subsets 
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have been tested once, that is, the test set is cycled, the cross-validation process ends. The average of the 

accuracy of the 10 test results was calculated as the overall evaluation index of the model, and the model with 

the highest accuracy was obtained. Each data set contains approximately 50% of benign cases and malig-nant 

cases. Among them, the training set is used for model training and parameter learning; the verification set is 

used to optimize the model, and the parameters are automatically fine-tuned according to the test results of the 

model in the training process; the test set is used to test the model’s recognition and generalization ability. 

Through the K-fold cross-validation principle, the assigned 30,630 mammogram data sets were placed 

in the AlexNet, VGGNet, GoogLeNet, DenseNet and DenseNet-II models for training, ver-ification and testing 

according to the unified principle. Different network models use the time.time () function to calculate the time. 

The difference between the end time and the start time is the time when the network model is classified. 

 

4.3.  Evaluation criteria 

For the classification of medical images, this paper evaluates the classification performance of the 

model from sensitivity (Sen), specificity (Spec), and accuracy (Acc) [31]. Specificity, sensitivity and accuracy 

are defined as follows. 

 

Sensitivity(Sen) 

= 

  TP 

× 100% (4) 

    

TP+FN 

Specificity(Spec

) = 

  TN 

× 100% (5) 

   

  

TN+F

P 

 

Accurac

y 

Ac

c 

) = 

TP+TP 

× 

100% (6) 

TP+TN+FP+FN (    

 

In the formula, TP (True positive) is the number of pictures which diagnostic model can accurately 

identify as malignant tumors. FP (False positive) refers to the number of pictures in which a diag-nostic model 

mistakenly identifies a benign tumor as a malignant tumor. TN (True negative) is the number of pictures that the 

diag-nostic model can accurately identify as a benign tumor. FN (False positive) refers to the number of pictures 

of a type of benign tumor detected by a diagnostic model malignant tumor. 

 

The receiver operating characteristic (ROC) can be further intro-duced by TP and FP. The ROC curve 

is a graphical curve on a two-dimensional plane. By using the performance of the classifi-cation model, 

adjusting the threshold of the classifier, a curve of (0,0), (1,1) can be obtained, which is the ROC curve of the 

classi-fication model. The AUC value refers to the area enclosed by the ROC curve in the [0,1] interval and the 

X axis. The overall perfor-mance of the computer-aided diagnostic system is proportional to the AUC value, 

which means the greater the AUC value, the better the performance [32]. 

 

4.4.  Experimental results and analysis 

To verify the performance of the benign and malignant classifi-cation methods of mammography in 

this paper, the training results of the five different network models are all K-fold cross-validated, and the K 

value is 10. The main evaluation classifier performance indicators are sensitivity (Sen), specificity (Spec), 

accuracy (Acc) and ROC curve area (AUC), etc. The result is a comparative anal-ysis of the 10-fold cross-

validation average results. The statistical experiment results are shown in Table 2. 

 

Table 2 

The performance table of breast cancer benign and malignant classification(the 10-fold cross-validation average 

results). 
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Fig. 8. VGG network structure. 
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Fig. 9. The training error rate of the five network models (the 10-fold cross-validation average results). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. The ROC curve and AUC value of five network models (the 10-fold cross-validation average results). 

 

It can be seen that when the improved DenseNet-II network model is adopted, the three classification 

indicators of Spec, Sen and Acc are the highest respectively. Compared with the other four network models, the 

improved DenseNet-II network model with Inception structure has been added, the average accuracy of 

classification reaches 94.55%. It shows that the improved model can extract more distinguishing features, so the 

recognition rate is higher, and it has better robustness and generalization. 

The training error rate of the five network models is shown in Fig. 9. The abscissa indicates the number 

of iterations, and the ordi-nate indicates the training error rate. As the number of training increases, the overall 

trend is downward. The error rate of the DenseNet-II model has been the lowest, followed by DenseNet, 

GoogLeNet, and VGGNet, and finally AlexNet. 

 

Fig.10 shows the ROC curve of the five network structure clas-sification performance and the area under the 

curve AUC. The coordinates are the false positive rate (1-Specificity) and the ordi- nate is the sensitivity 

(Sensitivity). The DenseNet-II model was initially at a distinct advantage, followed by DenseNet model. Among 

them, the VGCNet and GoogLeNet models have AUC val-ues of more than 0.8, AlexNet has the worst 
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classification effect, and the AUC value reaches 0.778. It can also be seen that the clas-sification performance of 

the DenseNet-II structure is significantly better than other structural models. It can be seen that DenseNet- 

II has better performance in mammography images classification. With the increase of the number of iterations, 

the training error rate is steadily reduced, and there is no over-fitting phenomenon. 

Due to the advantage of dense connection between DenseNet and DenseNet-II, the gradient 

disappearance problem is effectively solved, the number of parameters is greatly reduced, and fea-ture 

propagation and feature reuse are enhanced. Both models have advantages over AlexNet, VGGNet and 

GoogLeNet in terms of sensitivity, specificity, accuracy, and classification performance. In addition, DenseNet-

II has added the Inception structure, which greatly reduces the amount of parameters and solves the problem of 

gradient descent. The classification performance is better than that of the DenseNet model, which further 

improves the accuracy of the benign and malignant classification of mammography images. 

 

V. CONCLUSION 
This paper studies the use of deep learning methods to achieve the benign and malignant classification 

of mammograms, and pro-poses an improved neural network model called DenseNet-II neural network model. 

Firstly, aiming at the insufficiency of sample data set, through the data enhancement method, the over-fitting 

prob-lems in deep learning due to insufficient data set is effectively avoided. Secondly, Inception Net replaces 

the first convolutional layer of the DenseNet neural network model. The DenseNet neural network model is 

improved, and the calculation speed and effi-ciency of the network model are improved. Finally, the 10-fold 

cross-validation is used to verify the classification results of five network models. The results show that 

DenseNet-II neural net-work model is superior to other structural models in classification performance, thus 

achieving a more accurate classification of mam-mography images benign and malignant. The method proposed 

in this paper not only improves the benign and malignant classifi-cation performance of mammography images, 

but also provides doctors with more objective and accurate diagnosis results, which has important clinical 

application value and research significance. 
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